Skip to menu Skip to content Skip to footer

You're viewing this site as a domestic an international student

You're a domestic student if you are:

  • a citizen of Australia or New Zealand,
  • an Australian permanent resident, or
  • a holder of an Australian permanent humanitarian visa.

You're an international student if you are:

  • intending to study on a student visa,
  • not a citizen of Australia or New Zealand,
  • not an Australian permanent resident, or
  • a temporary resident (visa status) of Australia.
You're viewing this site as a domestic an international student
Change

Optimising light-driven microalgae cell factories: Biochemical studies of Photosystem II mutants and their light harvesting systems

This project is closed for international students.

Project summary

Program
PhD
Location
St Lucia
Research area
Biological sciences

Project description

The global transition to reach Net Zero carbon dioxide emissions by 2050 is forecast to require US$144 trillion (or $5.5 trillion annually to 2050) of investment, highlighting an extraordinary opportunity to develop renewable technologies.

The sun is by far the largest renewable energy resource available to us, and every 2 hrs provides Earth with more energy than is required to power our entire global economy for a year.

Oxygenic photosynthetic organisms including plants, algae and cyanobacteria (and the intricate photosynthetic machinery within them) form the biological interface between the sun and our biosphere. Over 3 billion years, these intricate photosynthetic interfaces have evolved to capture this solar energy and CO2 to generate oxygen and biomass that provide the food, fuel, biomaterials, and clean water that support aerobic life on Earth.

The first step of photosynthesis and all light-driven biotechnologies is light capture by the Light Harvesting Complex (LHC) proteins associated with Photosystems I and II. This PhD project will focus on biochemically and functionally defining key LHC trimers and ~ 1MDa photosynthetic supercomplexes. This work supports the structure-guided design of next-generation high-efficiency CRISPR-engineered cell lines for light-driven biotechnology applications.

The successful PhD candidate will be part of a strong multi-disciplinary team in the Centre for Solar Biotechnology (CSB; 30 international teams, ~35 industry partners to date) within the Institute for Molecular Bioscience (IMB) at the University of Queensland (UQ). The IMB is one of Australia’s premier life sciences institutes and ranks highly internationally. UQ regularly ranks in the top 1% (top 50) universities internationally.

The CSB and our industry partners are focused on developing advanced light-driven biotechnologies based on single cell green algae that tap into this huge solar energy resource and use it to drive the production of a broad range of products from high-value recombinant proteins through to cost-competitive renewable fuels. The IMB has excellent protein biochemistry facilities (protein purification, cryo-electron microscopy and mass spectrometry) as well as powerful robotic systems (to screen for high-efficiency cell lines) to support this work.

The project will involve microalgal cell culture, light microscopy, purification of photosystem complexes by sucrose density gradient centrifugation and FPLC, biochemical and biophysical analyses of these complexes, negative stain and cryo-electron microscopy. They will also have the opportunity to use the state-of-the-art cryo-EM facilities to collect atomic resolution images for single particle analysis.

Research environment

The IMB is located at the beautiful sub-tropical St Lucia Campus of the University of Queensland and provides easy access to the Brisbane CBD, Stradbroke Island, the Sunshine Coast, Gold Cost, Gold Coast hinterland and flights to the Great Barrier Reef via Brisbane Airport.

The successful PhD candidate will be part of a strong multi-disciplinary team in the Centre for Solar Biotechnology (CSB; 30 international teams, ~35 industry partners to date) within the Institute for Molecular Bioscience (IMB) at the University of Queensland (UQ). The IMB is one of Australia’s premier life sciences institutes and ranks highly internationally. UQ regularly ranks in the top 1% (top 50) universities internationally.

Scholarship

This is an Earmarked scholarship project that aligns with a recently awarded Australian Government grant.

The scholarship includes:

  • living stipend of $35,000 per annum tax free (2024 rate), indexed annually
  • your tuition fees covered
  • single overseas student health cover (OSHC).

Learn more about the Earmarked scholarship.

Supervisor

Preferred educational background

Your application will be assessed on a competitive basis.

We take into account your:

  • previous academic record
  • publication record
  • honours and awards
  • employment history.

A working knowledge of protein biochemistry with experience in the purification of membrane proteins would be of benefit to someone working on this project.

You will demonstrate academic achievement in the field(s) of biochemistry and/or structural biology and the potential for scholastic success.

A background or knowledge of protein biochemistry and cell biology is highly desirable.

How to apply

This project requires candidates to commence no later than Research Quarter 4, 2024. To allow time for your application to be processed, we recommend applying no later than 31 May, 2024 31 March, 2024.

You can start in an earlier research quarter. See application dates.

Before you apply

  1. Check your eligibility for the Doctor of Philosophy (PhD).
  2. Prepare your documentation.
  3. Contact Professor Ben Hankamer (b.hankamer@imb.uq.edu.au) to discuss your interest and suitability.

When you apply

You apply for this scholarship when you submit an application for a PhD. You don’t need to submit a separate scholarship application.

In your application ensure that under the ‘Scholarships and collaborative study’ section you select:

  • My higher degree is not collaborative
  • I am applying for, or have been awarded a scholarship or sponsorship
  • UQ Earmarked Scholarship type.

Apply now

This project is not available to international students